High-Rise Reinforced Concrete Structures: Database-Assisted Design for Wind
نویسنده
چکیده
Advances in wind pressure measurement and computer technology have made time-domain analyses of wind effects on high-rise structures possible in recent years. Time-domain solutions use aerodynamic and wind climatological databases and provide full phase information on wind-induced response that is lost in the frequency-domain approach; therefore, they can account rigorously for the superposed effects of any number of modes of vibration of any shape; for mode coupling; for wind directionality effects; and for the joint contributions of axial forces, bending moments, and shear forces in interaction equations used for structural design. Unlike the frequency-domain approach, in the time-domain approach, the process of determining wind effects and the structural design process, referred to jointly as database-assisted design (DAD), are integrated, transparent, and fully auditable. The objective of this study is to present the DAD approach as applied to highrise reinforced concrete (RC) buildings. Given the time histories of pressures, measured in the wind tunnel at a sufficient number of taps on the exterior faces of the building envelope for a sufficient number of mean speed directions and a preliminary design of the building, the structural engineer can calculate, as functions of wind speed and direction: (1) demand-to-capacity indexes for any number of members and cross sections, (2) interstory drift, (3) and top floor accelerations. These responses are properties of the structure independent of the wind climate, and constitute response databases used in conjunction with a wind climatological database to obtain the requisite wind effects for any specified mean recurrence interval. The design, which accounts for both wind and gravity effects, is performed iteratively until the design specifications are satisfied. DOI: 10.1061/(ASCE)ST.1943-541X.0000394. © 2011 American Society of Civil Engineers. CE Database subject headings: Databases; Reinforced concrete; Wind pressure; High-rise buildings; Measurement; Computer
منابع مشابه
CRITICAL INCIDENT ANGLE FOR THE MINIMUM COST DESIGN OF LOW, MID AND HIGH-RISE STEEL AND REINFORCED CONCRETE-COMPOSITE BUILDINGS
One of the main tasks of engineers is to design structural systems light and economic as possible, yet resistant enough to withstand all possible loads arising during their service life and to absorb the induced seismic energy in a controlled and predictable fashion. The traditional trial-and-error design approach is not capable to determine an economical design satisfying also the code require...
متن کاملPractical estimation of veering effects on high-rise structures: a database-assisted design approach
Atmospheric boundary layer winds experience two types of effects due to friction at the ground surface. One effect is the increase of the wind speeds with height above the surface. The second effect, called the Ekman layer effect, entails veering the change of the wind speed direction as a function of height above the surface. In this study a practical procedure is developed within a databaseas...
متن کاملDirect Displacement Based Design of Reinforced Concrete Elevated Water Tanks Frame Staging
Elevated water tanks supported by the reinforced concrete (RC) Staging are classified as inverted pendulum structures. These are considered as structures of high post-earthquake importance and should remain functional after the seismic events. National codes of various countries recommend Force-Based Design (FBD) procedure for water tank staging, which does not ensure nonlinear performance leve...
متن کاملExperimental Strengthening of the Two-way Reinforced Concrete Slabs with High Performance Fiber Reinforced Cement Composites Prefabricated Sheets
Reinforced concrete structures need to be strengthened and retrofitted for various reasons, including errors during design and/or construction, so in most cases strengthening of structural elements is much more economical than rebuilding the structure. Using HPFRCC with tensile stiffening behavior has been developed to strengthen the concrete structures over the recent few years. In this paper,...
متن کاملForecasting of Shear Strength of Concrete Beam Reinforced with FRP Bar
This study develops a new approach for forecasting shear Strength of concrete beam without stirrups based on the artificial neural networks (ANN). Proposed ANN considers geometric and mechanical properties of cross section and FRP bars, and shear span-depth ratio. The ANN model is constructed from a set of experimental database available in the past literature. Efficiency of the ANN model was c...
متن کامل